Conditional Kolmogorov test statistic for the marginal distribution of Y under random censorship
Source:R/CondKolmY_RCM.R
CondKolmY_RCM.Rd
This class inherits from TestStatistic and implements a function to calculate the test statistic (and x-y-values that can be used to plot the underlying process).
The process underlying the test statistic is defined by $$\tilde{\alpha}_n^{KM}(t) = \sqrt{n} \left( \hat{F}^{KM}_n(t) - \frac{1}{n} \sum_{i=1}^n F(t|\hat{\vartheta}_n, X_i) \right), \quad -\infty \le t \le \infty.$$
Super class
gofreg::TestStatistic
-> CondKolmY_RCM
Methods
Method calc_stat()
Calculate the value of the test statistic for given data and a model to test for.
Arguments
data
data.frame()
with columns x and y containing the datamodel
ParamRegrModel to test for, already fitted to the data
Examples
# Create an example dataset
n <- 100
x <- cbind(runif(n), rbinom(n, 1, 0.5))
model <- NormalGLM$new()
y <- model$sample_yx(x, params=list(beta=c(2,3), sd=1))
c <- rnorm(n, mean(y)*1.2, sd(y)*0.5)
data <- dplyr::tibble(x = x, z = pmin(y,c), delta = as.numeric(y <= c))
# Fit the correct model
model$fit(data, params_init=list(beta=c(1,1), sd=3), inplace = TRUE, loglik = loglik_xzd)
# Print value of test statistic and plot corresponding process
ts <- CondKolmY_RCM$new()
ts$calc_stat(data, model)
print(ts)
#> Test statistic with value 0.8832506
plot(ts)
# Fit a wrong model
model2 <- NormalGLM$new(linkinv = function(u) {u+10})
model2$fit(data, params_init=list(beta=c(1,1), sd=3), inplace = TRUE, loglik = loglik_xzd)
# Print value of test statistic and plot corresponding process
ts2 <- CondKolmY_RCM$new()
ts2$calc_stat(data, model2)
print(ts2)
#> Test statistic with value 4.557321
plot(ts2)