The package offers several models (mostly GLMs) that can be used for parametric regression and a subsequent goodness-of-fit test. However, there might be other models that the user wishes to use in their analysis. In the following, we will describe how custom models can be defined and used along with the package.
The abstract base class ParamRegrModel
Whenever the user wants to define a new model, they have to create an
R6 class inheriting from the abstract base class
ParamRegrModel
. In particular, the following methods have
to be implemented:
-
f_yx()
evaluating the conditional density function -
F_yx()
evaluating the conditional distribution function -
F1_yx()
evaluating the conditional quantile function -
mean_yx()
evaluating the regression function -
sample_yx()
generating a sample of response variables according to the conditional distribution -
fit()
handling the shape of theparams
argument and applying thefit()
-method of the abstract base class
It is recommended to check the correct shape of the
params
argument in all five methods above. Usually, it is a
list()
with tags corresponding to the model parameters.
Important note: When evaluating the likelihood
function, f_yx
(and F_yx
as well in case of
censored data) will be called with the argument params
being a plain numeric vector instead of a list. This case should be
minded in the checks at the beginning of these methods.
Example
In the following example, we will define a new model of the form with and (where the squaring is performed element-wise).
CustomModel <- R6::R6Class(
classname = "CustomModel",
inherit = ParamRegrModel,
public = list(
f_yx = function(t, x, params = private$params) {
if (checkmate::test_atomic_vector(params)) {
# reshape plain numeric vector into list with appropriate tags
xcol <- ncol(as.matrix(x))
checkmate::assert_atomic_vector(params, len = 1 + 2 * xcol)
params <- list(a = params[1],
b = params[2:(1+xcol)],
c = params[(2+xcol):(1+2*xcol)])
} else {
private$check_params(params, x)
}
dnorm(t, mean = self$mean_yx(x, params),
sd = as.matrix(x)^2 %*% params$c)
},
F_yx = function(t, x, params = private$params) {
if (checkmate::test_atomic_vector(params)) {
# reshape plain numeric vector into list with appropriate tags
xcol <- ncol(as.matrix(x))
checkmate::assert_atomic_vector(params, len = 1 + 2 * xcol)
params <- list(a = params[1],
b = params[2:(1+xcol)],
c = params[(2+xcol):(1+2*xcol)])
} else {
private$check_params(params, x)
}
pnorm(t, mean = self$mean_yx(x, params),
sd = as.matrix(x)^2 %*% params$c)
},
F1_yx = function(t, x, params = private$params) {
private$check_params(params, x)
qnorm(t, mean = self$mean_yx(x, params),
sd = as.matrix(x)^2 %*% params$c)
},
sample_yx = function(x, params = private$params) {
private$check_params(params, x)
rnorm(nrow(as.matrix(x)), mean = self$mean_yx(x, params),
sd = as.matrix(x)^2 %*% params$c)
},
mean_yx = function(x, params = private$params) {
private$check_params(params, x)
params$a + exp(as.matrix(x) %*% params$b)
},
fit = function(data, params_init = private$params, loglik = loglik_xy, inplace = FALSE) {
checkmate::assert_names(names(data), must.include = c("x"))
private$check_params(params_init, data$x)
params_opt <- super$fit(data, params_init = unlist(params_init, use.names = FALSE),
loglik = loglik)
xcol <- ncol(as.matrix(x))
params_opt <-list(a = params_opt[1],
b = params_opt[2:(1+xcol)],
c = params_opt[(2+xcol):(1+2*xcol)])
if (inplace) {
private$params <- params_opt
invisible(self)
} else {
params_opt
}
}
),
private = list(
check_params = function(params, x) {
checkmate::assert_list(params, len = 3)
checkmate::assert_names(names(params), identical.to = c("a", "b", "c"))
checkmate::assert_vector(params$b, len = ncol(as.matrix(x)))
checkmate::assert_vector(params$c, len = ncol(as.matrix(x)))
}
)
)
Now, let us generate some data following this new model.
set.seed(123)
n <- 100
x <- cbind(rnorm(n), runif(n))
model <- CustomModel$new()
params_true <- list(a = 0.8, b = c(0.5, 0.7), c = c(0.1, 0.2))
y <- model$sample_yx(x, params_true)
data <- dplyr::tibble(x = x, y = y)
head(data)
#> # A tibble: 6 × 2
#> x[,1] [,2] y
#> <dbl> <dbl> <dbl>
#> 1 -0.560 0.239 1.73
#> 2 -0.230 0.962 2.69
#> 3 1.56 0.601 4.23
#> 4 0.0705 0.515 2.23
#> 5 0.129 0.403 2.21
#> 6 1.72 0.880 5.04
Fitting the model to the generated data should yield good estimates of the model parameters.
model$fit(data, params_init = list(a = 1, b = c(1,1), c = c(1,1)), inplace = TRUE)
model$get_params()
#> $a
#> [1] 0.8015445
#>
#> $b
#> [1] 0.4956839 0.7074226
#>
#> $c
#> [1] 0.07651354 0.21522819
Further, a goodness-of-fit test should not reject the (correct) model, i.e. yield a rather high p-value.
gt <- GOFTest$new(data = data, model_fitted = model, test_stat = CondKolmY$new(), nboot = 100)
gt$get_pvalue()
#> [1] 0.33