Convergence analysis for Multi-level Spectral Deferred Corrections (MLSDC) SciCADE 2019

July 25, 2019 | Gitte Kremling & Robert Speck | Jülich Supercomputing Centre Forschungszentrum Jülich

Motivation

- MLSDC: Multi-level extension of Spectral Deferred Corrections (SDC)
- Several numerical examples indicate its convergence **but** yet no general theoretical proof exists
- Convergence proofs for SDC exist

 \Rightarrow Try to use similar ideas to prove MLSDC convergence

Collocation formulation on a single time-step

• Picard form of an initial value problem on $[t_0, t_0 + \Delta t]$

$$u(t) = u_0 + \int_{t_0}^t f(u(s))ds$$

• Discretized by spectral quadrature rules with nodes au_m

$$u_m = u_0 + \Delta t \sum_{j=1}^{M} q_{m,j} f(u_j) \approx u_0 + \int_{t_0}^{\tau_m} f(u(s)) ds$$
$$\iff \underbrace{(I - \Delta t QF)(U)}_{C(U)} = U_0$$

• Approximation of order M + 1

Collocation formulation on a single time-step

• Picard form of an initial value problem on $[t_0, t_0 + \Delta t]$

$$u(t) = u_0 + \int_{t_0}^t f(u(s)) ds$$

• Discretized by spectral quadrature rules with nodes au_m

$$u_m = u_0 + \Delta t \sum_{j=1}^{M} q_{m,j} f(u_j) \approx u_0 + \int_{t_0}^{\tau_m} f(u(s)) ds$$
$$\iff \underbrace{(I - \Delta t QF)(U)}_{C(U)} = U_0$$

• Approximation of order M + 1

\rightarrow How to solve this system efficiently?

Spectral Deferred Corrections (SDC)

A. Dutt, L. Greengard and V. Rokhlin (BIT 2000)

• Standard Richardson iteration (\doteq Picard iteration):

$$U^{(k+1)} = U^{(k)} + (U_0 - C(U^{(k)}))$$

= $U_0 + (I - \Delta t QF)(U^{(k)})$

• Preconditioned by use of simpler integration rule Q_{Δ} :

$$U^{(k+1)} = U^{(k)} + P^{-1}(U_0 - C(U^{(k)}))$$
$$P(U) := (I - \Delta t Q_\Delta F)(U)$$
$$\Rightarrow (I - \Delta t Q_\Delta F) U^{(k+1)} = U_0 + \Delta t (Q - Q_\Delta) F(U^{(k)})$$

•
$$Q_{\Delta}$$
 is usually a lower triangular matrix

Spectral Deferred Corrections (SDC)

A. Dutt, L. Greengard and V. Rokhlin (BIT 2000)

• Standard Richardson iteration (\doteq Picard iteration):

$$U^{(k+1)} = U^{(k)} + (U_0 - C(U^{(k)}))$$

= $U_0 + (I - \Delta t QF)(U^{(k)})$

• Preconditioned by use of simpler integration rule Q_{Δ} :

$$U^{(k+1)} = U^{(k)} + P^{-1}(U_0 - C(U^{(k)}))$$
$$P(U) := (I - \Delta t Q_\Delta F)(U)$$
$$\Rightarrow (I - \Delta t Q_\Delta F) U^{(k+1)} = U_0 + \Delta t (Q - Q_\Delta) F(U^{(k)})$$

•
$$Q_{\Delta}$$
 is usually a lower triangular matrix

T. Tang, H. Xie and X. Yin (J Sci Comput 2012)

Theorem 1 (SDC convergence)

T. Tang, H. Xie and X. Yin (J Sci Comput 2012)

Theorem 1 (SDC convergence)

- LTE compared to the solution of the initial value problem is $\mathcal{O}(\Delta t^{\min(k_0+k,M+1)})$
- SDC gains one order per iteration, limited by the number of quadrature nodes
- Order limit M + 1 stems from collocation problem
 - Higher order for last point in time (e.g. 2*M* for Radau quadrature)

Multi-level SDC (MLSDC)

R. Speck et al. (BIT 2015)

- Multi-level method to solve the collocation problem with SDC iterations on different grids/levels
- Here: Two-grid algorithm (Ω_H : coarse, Ω_h : fine)
- E.g. different resolution in time (number of quadrature nodes *M*) or space (degrees of freedom *N*) on the grids
- I_h^H , I_h^h transfer operators (restriction and interpolation)

R. Speck et al. (BIT 2015)

$$\Omega_h: \ U_h^{(0)} \to \cdots \to U_h^{(k)}$$

 Ω_H :

R. Speck et al. (BIT 2015)

$$\begin{array}{ccc} \Omega_h: & U_h^{(0)} \rightarrow \cdots \rightarrow U_h^{(k)} \\ & & & \\ & & \\ \Omega_H: & & I_h^H U_h^{(k)} \end{array}$$

R. Speck et al. (BIT 2015)

$$\Omega_{h}: \quad U_{h}^{(0)} \to \cdots \to U_{h}^{(k)}$$

$$\downarrow \text{restriction}$$

$$\Omega_{H}: \qquad \qquad I_{h}^{H}U_{h}^{(k)} \xrightarrow{\text{SDC with } \tau} U_{H}^{(k+\frac{1}{2})}$$

SDC iteration to solve $C_H(U) = U_{0,H} + \tau$ with $\tau = C_H(I_h^H U_h^{(k)}) - I_h^H C_h(U_h^{(k)})$ and $I_h^H U_h^{(k)}$ as initial guess

R. Speck et al. (BIT 2015)

$$\begin{split} \Omega_h : \quad U_h^{(0)} \to \cdots \to U_h^{(k)} & \longrightarrow & U_h^{(k+\frac{1}{2})} \\ & & \downarrow \text{ restriction } & \uparrow \text{ coarse grid correction} \\ \Omega_H : & I_h^H U_h^{(k)} & \xrightarrow{\text{SDC with } \tau} & U_H^{(k+\frac{1}{2})} \end{split}$$

$$U_{h}^{(k+\frac{1}{2})} = U_{h}^{(k)} + I_{H}^{h}(U_{H}^{(k+\frac{1}{2})} - I_{h}^{H}U_{h}^{(k)})$$

R. Speck et al. (BIT 2015)

SDC iteration to solve $C_h(U) = U_{0,h}$ with $U_h^{(k+\frac{1}{2})}$ as initial guess

R. Speck et al. (BIT 2015)

 \Rightarrow Does this method converge? How fast?

R. Speck et al. (BIT 2015)

 \Rightarrow Does this method converge? How fast?

Theorem 2 (MLSDC convergence)

Theorem 2 (MLSDC convergence)

- LTE compared to the solution of the initial value problem is $\mathcal{O}(\Delta t^{\min(k_0+k,M+1)})$
- MLSDC gains one order per iteration, limited by the number of quadrature nodes
- No improvement compared to SDC

Theorem 2 (MLSDC convergence)

- LTE compared to the solution of the initial value problem is $\mathcal{O}(\Delta t^{\min(k_0+k,M+1)})$
- MLSDC gains one order per iteration, limited by the number of quadrature nodes
- No improvement compared to SDC \rightarrow Really?

SDC vs. MLSDC convergence

- Upper bound for step size Δt : same
- Comparison of the coefficients: Improvement of MLSDC over SDC seems to depend on $\|(I I_H^h I_h^H)e_h\|$ with $e_h := U_h U_h^{(k)}$

SDC vs. MLSDC convergence

- Upper bound for step size Δt : same
- Comparison of the coefficients: Improvement of MLSDC over SDC seems to depend on $\|(I I_H^h I_h^H)e_h\|$ with $e_h := U_h U_h^{(k)}$

\rightarrow Further analyzed $\|(I - I_H^h I_h^H) e_h\|$

- Assumptions: Coarsening in space with step size Δx , Lagrange interpolation of order p for I_H^h , injection for I_h^H
- If *e_h* sufficiently smooth:

$$\|(I-I_H^hI_h^H)e_h\| \leq C\Delta x^p \|e_h\|$$

Theorem 2 (MLSDC convergence)

Theorem 3 (improved MLSDC convergence)

MLSDC converges linearly with convergence factor $\mathcal{O}(\Delta t^2)$ to the collocation solution, if Δt is sufficiently small and f is Lipschitz continuous and Δx^p is sufficiently small and $U_h - U_h^{(k)}$ is sufficiently smooth.

Theorem 3 (improved MLSDC convergence)

MLSDC converges linearly with convergence factor $\mathcal{O}(\Delta t^2)$ to the collocation solution, if Δt is sufficiently small and f is Lipschitz continuous and Δx^p is sufficiently small and $U_h - U_h^{(k)}$ is sufficiently smooth.

- LTE compared to the solution of the initial value problem is $\mathcal{O}(\Delta t^{\min(k_0+2k,M+1)})$
- MLSDC can gain two orders per iteration, limited by the number of quadrature nodes
- Order improvement depends on spatial step size Δx , interpolation order p and smoothness of the error

Theorem 3 (improved MLSDC convergence)

MLSDC converges linearly with convergence factor $\mathcal{O}(\Delta t^2)$ to the collocation solution, if Δt is sufficiently small and f is Lipschitz continuous and Δx^p is sufficiently small and $U_h - U_h^{(k)}$ is sufficiently smooth.

- LTE compared to the solution of the initial value problem is $\mathcal{O}(\Delta t^{\min(k_0+2k,M+1)})$
- MLSDC can gain two orders per iteration, limited by the number of quadrature nodes
- Order improvement depends on spatial step size Δx , interpolation order p and smoothness of the error

 \Rightarrow Can we see this practically?

• Initial value problem:

$$egin{aligned} & u_t(x,t) = 0.1 u_{xx}(x,t) \quad orall t \in [0,\Delta t], \; x \in [0,1], \ & u(0,t) = 0, \quad u(1,t) = 0, \ & u(x,0) = sin(4\pi x) \end{aligned}$$

- Analytical solution known
- Method parameters:
 - Transformed to ODE by finite-difference method
 - M = 5 quadrature nodes
 - Q_{Δ} corresponds to right-hand rectangle rule (implicit Euler)

• $\Delta x = 2^{-8}$, p = 8, spread initial value as initial guess (smooth)

• $\Delta x = 2^{-8}$, p = 8, spread initial value as initial guess (smooth)

• $\Delta x = 2^{-4}$, p = 8, spread initial value as initial guess (smooth)

• $\Delta x = 2^{-8}$, p = 4, spread initial value as initial guess (smooth)

•
$$\Delta x = 2^{-8}$$
, $p = 8$, random initial guess (not smooth)

Conclusion and outlook

Summary

- Theoretical proof for MLSDC convergence
- MLSDC gains one or two orders per iteration, limited by the number of quadrature nodes (if Δt small and f Lipschitz continuous)
 → Conditions for higher order: Δx small, p high, error smooth

Conclusion and outlook

Summary

- Theoretical proof for MLSDC convergence
- MLSDC gains one or two orders per iteration, limited by the number of quadrature nodes (if Δt small and f Lipschitz continuous)
 → Conditions for higher order: Δx small, p high, error smooth

Conclusion and outlook

Summary

- Theoretical proof for MLSDC convergence
- MLSDC gains one or two orders per iteration, limited by the number of quadrature nodes (if Δt small and f Lipschitz continuous)
 → Conditions for higher order: Δx small, p high, error smooth

What's next?

- Further analysis of conditions for the smoothness of the error
- Use convergence results to construct a time-adaptive method
- Convergence analysis for other extensions of SDC (e.g. SISDC)

