
Convergence analysis for Multi-level
Spectral Deferred Corrections (MLSDC)
SciCADE 2019

July 25, 2019 Gitte Kremling & Robert Speck Jülich Supercomputing Centre
Forschungszentrum Jülich

Member of the Helmholtz Association Gitte Kremling



Motivation

• MLSDC: Multi-level extension of Spectral Deferred Corrections (SDC)

• Several numerical examples indicate its convergence but yet no
general theoretical proof exists

• Convergence proofs for SDC exist

⇒ Try to use similar ideas to prove MLSDC convergence
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Collocation formulation on a single time-step
• Picard form of an initial value problem on [t0, t0 + ∆t]

u(t) = u0 +
∫ t

t0
f (u(s))ds

• Discretized by spectral quadrature rules with nodes τm

um = u0 + ∆t
M∑

j=1
qm,j f (uj) ≈ u0 +

∫ τm

t0
f (u(s))ds

⇐⇒ (I −∆tQF )(U)︸ ︷︷ ︸
C(U)

= U0

• Approximation of order M + 1

→ How to solve this system efficiently?

Member of the Helmholtz Association Gitte Kremling Slide 2 ‖ 15



Collocation formulation on a single time-step
• Picard form of an initial value problem on [t0, t0 + ∆t]

u(t) = u0 +
∫ t

t0
f (u(s))ds

• Discretized by spectral quadrature rules with nodes τm

um = u0 + ∆t
M∑

j=1
qm,j f (uj) ≈ u0 +

∫ τm

t0
f (u(s))ds

⇐⇒ (I −∆tQF )(U)︸ ︷︷ ︸
C(U)

= U0

• Approximation of order M + 1

→ How to solve this system efficiently?

Member of the Helmholtz Association Gitte Kremling Slide 2 ‖ 15



Spectral Deferred Corrections (SDC)
A. Dutt, L. Greengard and V. Rokhlin (BIT 2000)

• Standard Richardson iteration (=̂ Picard iteration):

U(k+1) = U(k) + (U0 − C(U(k)))
= U0 + (I −∆tQF )(U(k))

• Preconditioned by use of simpler integration rule Q∆:

U(k+1) = U(k) + P−1(U0 − C(U(k)))
P(U) := (I −∆tQ∆F )(U)

⇒ (I −∆tQ∆F )U(k+1) = U0 + ∆t(Q − Q∆)F (U(k))

• Q∆ is usually a lower triangular matrix
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Convergence theorem for SDC
T. Tang, H. Xie and X. Yin (J Sci Comput 2012)

Theorem 1 (SDC convergence)
SDC converges linearly with convergence factor O(∆t) to the collocation
solution, if ∆t is sufficiently small and f is Lipschitz continuous.

• LTE compared to the solution of the initial value problem is
O(∆tmin(k0+k,M+1))

• SDC gains one order per iteration, limited by the number of
quadrature nodes

• Order limit M + 1 stems from collocation problem
• Higher order for last point in time (e.g. 2M for Radau quadrature)
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Multi-level SDC (MLSDC)
R. Speck et al. (BIT 2015)

• Multi-level method to solve the collocation problem with SDC
iterations on different grids/levels

• Here: Two-grid algorithm (ΩH : coarse, Ωh: fine)

• E.g. different resolution in time (number of quadrature nodes M) or
space (degrees of freedom N) on the grids

• IHh , IhH transfer operators (restriction and interpolation)

Member of the Helmholtz Association Gitte Kremling Slide 5 ‖ 15



MLSDC iteration
R. Speck et al. (BIT 2015)

Ωh :

ΩH :

U(0)
h

· · · U(k)
h

IHh U(k)
h

restriction

U(k+ 1
2 )

H
SDC with τ

U(k+ 1
2 )

h

coarse grid correction

U(k+1)
h

SDC
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U(k+ 1
2 )

H
SDC with τ

U(k+ 1
2 )

h

coarse grid correction
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h
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τ = CH(IHh U(k)

h )− IHh Ch(U(k)
h ) and IHh U(k)

h as initial guess
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2 )
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h + IhH(U(k+ 1

2 )
H − IHh U(k)
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⇒ Does this method converge? How fast?
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Convergence theorem for MLSDC

Theorem 2 (MLSDC convergence)
MLSDC converges linearly with convergence factor O(∆t) to the
collocation solution, if ∆t is sufficiently small and f is Lipschitz
continuous.

• LTE compared to the solution of the initial value problem is
O(∆tmin(k0+k,M+1))

• MLSDC gains one order per iteration, limited by the number of
quadrature nodes

• No improvement compared to SDC

→ Really?
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SDC vs. MLSDC convergence

• Upper bound for step size ∆t: same

• Comparison of the coefficients: Improvement of MLSDC over SDC
seems to depend on ‖(I − IhH IHh )eh‖ with eh := Uh − U(k)

h

→ Further analyzed ‖(I − IhH IHh )eh‖

• Assumptions: Coarsening in space with step size ∆x , Lagrange
interpolation of order p for IhH , injection for IHh

• If eh sufficiently smooth:

‖(I − IhH IHh )eh‖ ≤ C∆xp‖eh‖
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Convergence theorem for MLSDC 2
Theorem 2 (MLSDC convergence)
MLSDC converges linearly with convergence factor O(∆t) to the
collocation solution, if ∆t is sufficiently small and f is Lipschitz continuous.

and ∆xp is sufficiently small and Uh − U(k)
h is sufficiently smooth.

• LTE compared to the solution of the initial value problem is
O(∆tmin(k0+2k,M+1))

• MLSDC can gain two orders per iteration, limited by the number of
quadrature nodes

• Order improvement depends on spatial step size ∆x , interpolation
order p and smoothness of the error

⇒ Can we see this practically?
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Numerical results - Heat equation
• Initial value problem:

ut(x , t) = 0.1uxx (x , t) ∀t ∈ [0,∆t], x ∈ [0, 1],
u(0, t) = 0, u(1, t) = 0,

u(x , 0) = sin(4πx)

• Analytical solution known

• Method parameters:
• Transformed to ODE by finite-difference method
• M = 5 quadrature nodes
• Q∆ corresponds to right-hand rectangle rule (implicit Euler)
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Numerical results - Heat equation

• ∆x = 2−8, p = 8, spread initial value as initial guess (smooth)

2 92 82 72 6

t

10 12

10 10

10 8

10 6

10 4

10 2

100

er
ro

r

SDC

2 92 82 72 6

t

MLSDC

k=1
k=2
k=3
k=4
k=5

SDC (Theorem 1): LTE = O(∆tmin(k0+k,M+1))

MLSDC (Theorem 3): LTE = O(∆tmin(k0+2k,M+1))
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Numerical results - Heat equation

• ∆x = 2−4, p = 8, spread initial value as initial guess (smooth)
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Numerical results - Heat equation

• ∆x = 2−8, p = 4, spread initial value as initial guess (smooth)
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Numerical results - Heat equation

• ∆x = 2−8, p = 8, random initial guess (not smooth)
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Conclusion and outlook
Summary

• Theoretical proof for MLSDC convergence

• MLSDC gains one or two orders per iteration, limited by the number
of quadrature nodes (if ∆t small and f Lipschitz continuous)
→ Conditions for higher order: ∆x small, p high, error smooth

SUCCESS

What’s next?
• Further analysis of conditions for the smoothness of the error

• Use convergence results to construct a time-adaptive method

• Convergence analysis for other extensions of SDC (e.g. SISDC)
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