
Bootstrap-based goodness-of-fit test for
parametric families of conditional
distributions
March 13, 2025
Gitte Kremling



Motivating Example

0

10

20

30

0 2 4 6 8 10
X

Y

Some data

How does Y depend on X?

GPSD 2025 Gitte Kremling March 13, 2025 1 / 16



Motivating Example

0

10

20

30

0 2 4 6 8 10
X

Y

regression function

90% quantile

Linear regression with normal distribution

GPSD 2025 Gitte Kremling March 13, 2025 2 / 16



Motivating Example

0

10

20

30

0 2 4 6 8 10
X

Y

regression function

90% quantile

Exponential regression with Gamma distribution

Which one appropriately models the given data?

GPSD 2025 Gitte Kremling March 13, 2025 3 / 16



Motivating Example

0

10

20

30

0 2 4 6 8 10
X

Y

regression function

90% quantile

Exponential regression with Gamma distribution

Which one appropriately models the given data?

GPSD 2025 Gitte Kremling March 13, 2025 3 / 16



Problem

Data: i.i.d. sample of covariates Xi ∈ Rp and output variables Yi ∈ R

Aim: Find a good model for the conditional distribution Y |X ∼ F

Method: Test goodness-of-fit for different parametric families

H0 : F ∈ F = {(x, y) 7→ Fϑ(y|x) | ϑ ∈ Θ} vs. H1 : F /∈ F
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Goodness-of-fit test - Existing work

• Andrews (1997):

Based on the difference between a non- and semi-parametric
estimate of FX,Y

• Bierens and Wang (2012):

Based on the difference between a non- and semi-parametric
estimate of φX,Y

• Stute and Zhu (2002) / Dikta and Scheer (2021):

Based on the difference between a non- and semi-parametric
estimate of E[1{βT X≤t}Y ]
(for parametric GLMs only; tests for the regression function)

• Other approaches using kernel estimators
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Goodness-of-fit test - New approach

• Based on the difference between a non-parametric and
semi-parametric estimate of FY

• Non-parametric fit: empirical distribution function (ecdf)

F̂Y,n(t) := 1
n

n∑
i=1

1{Yi≤t}

• Semi-parametric fit, using MLE ϑ̂n and ecdf Ĥn of {Xi}n
i=1:

F̂Y,ϑ̂n
(t) :=

∫
Fϑ̂n

(t|x)Ĥn(dx) = 1
n

n∑
i=1

Fϑ̂n
(t|Xi)
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Goodness-of-fit test - New approach

• Conditional empirical process with estimated parameters:

α̃n(t) =
√

n
(
F̂Y,n(t) − F̂Y,ϑ̂n

(t)
)

= 1√
n

n∑
i=1

1{Yi≤t} − Fϑ̂n
(t|Xi)

• Kolmogorov-Smirnov type distance ∥α̃n∥∞ = supt |α̃n(t)| should
be small under H0

... But how small is small enough?

Find distribution of ∥α̃n∥∞ to decide when H0 should be rejected.
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Goodness-of-fit test - Asymptotic distribution

Theorem
Under H0 and some regularity conditions, α̃n converges weakly to a
centered Gaussian process α̃∞ with known covariance function which
is dependent on the true distribution functions of X and Y .

Use bootstrap to approximate the distribution of ∥α̃n∥∞.
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Goodness-of-fit test - Asymptotic distribution
Theorem
Under H0 and some regularity conditions, α̃n converges weakly to a
centered Gaussian process α̃∞ with known covariance function which
is dependent on the true distribution functions of X and Y .

Proof sketch:
• Splitting as in Durbin (1973):

α̃n(t) =
√

n
(

F̂Y,n(t) − F̂Y,ϑ0(t)
)

+
√

n
(

F̂Y,ϑ0(t) − F̂Y,ϑ̂n
(t)

)
• Apply Kosorok (2008), Theorem 7.17:

convergence of fidis and tightness ⇒ weak convergence

Use bootstrap to approximate the distribution of ∥α̃n∥∞.
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Goodness-of-fit test - Bootstrap

Aim: Estimate the distribution of ∥α̃n∥∞ under H0

Method:
• Resample from the given data in a way that H0 is fulfilled:

X∗
i = Xi, Y ∗

i ∼ Fϑ̂n
( · |X∗

i )

• Compute the test statistic ∥α̃∗
n∥∞ for this new sample

• Repeat these steps many times and use the ecdf of the resulting
test statistics as an estimate

Usage: p-value is approximated by the percentage of ∥α̃∗
n∥∞ that are

greater than or equal to ∥α̃n∥∞
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Goodness-of-fit test - Asymptotic correctness

Theorem
Under H0 and some regularity conditions, α̃n converges weakly to a
centered Gaussian process α̃∞ with known covariance function which
is dependent on the true distribution functions of X and Y .

Theorem
Under H0 and some regularity conditions, α̃∗

n converges weakly to the
same limit process α̃∞.
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Back to our motivating example
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Simulation study - Setup

X ∼ N (0, 1)

H0 : (Y |X) ∼ N (βT X, σ2)

n = 200 observations
m = 500 bootstrap iterations
r = 1000 simulation repetitions

Proportion of rejection for significance level α = 5%

(A) Y = 1 + X + ε where ε ∼ N (0, 1)

(B) Y = 1 + X + ε where ε follows a standard logistic distribution

(C) Y = 1 + X + ε where ε ∼ t5

(D) Y = 1 + X + X2 + ε where ε ∼ N (0, 1)

(E) Y = 1 + X + Xε where ε ∼ N (0, 1)
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Simulation study - Results
Proportion of rejection in percentage terms for α = 5%:

(A) (B) (C) (D) (E)

New approach 5.2 22.7 45.4 5.2 99.8
Andrews (1997) 5.6 18.2 37.6 7.4 100.0
Bierens & Wang (2012) 4.6 9.4 19.7 5.5 99.8
Dikta & Scheer (2021) 5.9 6.0 4.8 13.9 16.2

(A) Y = 1 + X + ε where ε ∼ N (0, 1)

(B) Y = 1 + X + ε where ε follows a standard logistic distribution

(C) Y = 1 + X + ε where ε ∼ t5

(D) Y = 1 + X + X2 + ε where ε ∼ N (0, 1)

(E) Y = 1 + X + Xε where ε ∼ N (0, 1)
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Advantages over former methods

• Compared to Andrews (1997):
Better applicable to cases with high-dimensional covariates

• Compared to Bierens and Wang (2012):
More sensitive to deviations from H0 (in our simulation study)

• Compared to Stute and Zhu (2002) / Dikta and Scheer (2021):
More specific because it tests for the whole conditional
distribution not just the regression function

• Additional advantage:
Easily applicable due to gofreg-package in R
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References

Preprint on arXiv: R-package on CRAN:

Any questions? :)
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