Bootstrap-based goodness-of-fit test for parametric families of conditional distributions

March 13, 2025

Gitte Kremling

How does Y depend on X?

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Which one appropriately models the given data?

Data: i.i.d. sample of covariates $X_i \in \mathbb{R}^p$ and output variables $Y_i \in \mathbb{R}$

Aim: Find a good model for the conditional distribution $Y|X \sim F$

Method: Test goodness-of-fit for different parametric families

$$H_0: F \in \mathcal{F} = \{(x, y) \mapsto F_{\vartheta}(y|x) \, | \, \vartheta \in \Theta\} \quad \text{vs.} \quad H_1: F \notin \mathcal{F}$$

H AACHEN JNIVERSITY OF APPLIED SCIENCES

• Andrews (1997):

Based on the difference between a non- and semi-parametric estimate of ${\cal F}_{{\cal X},{\cal Y}}$

• Andrews (1997):

Based on the difference between a non- and semi-parametric estimate of ${\cal F}_{{\cal X},{\cal Y}}$

• Bierens and Wang (2012):

Based on the difference between a non- and semi-parametric estimate of $\varphi_{X,Y}$

• Andrews (1997):

Based on the difference between a non- and semi-parametric estimate of ${\cal F}_{{\cal X},{\cal Y}}$

• Bierens and Wang (2012):

Based on the difference between a non- and semi-parametric estimate of $\varphi_{X,Y}$

• Stute and Zhu (2002) / Dikta and Scheer (2021):

Based on the difference between a non- and semi-parametric estimate of $\mathbb{E}[\mathbbm{1}_{\{\beta^T X \leq t\}}Y]$

(for parametric GLMs only; tests for the regression function)

• Andrews (1997):

Based on the difference between a non- and semi-parametric estimate of ${\cal F}_{{\cal X},{\cal Y}}$

• Bierens and Wang (2012):

Based on the difference between a non- and semi-parametric estimate of $\varphi_{X,Y}$

• Stute and Zhu (2002) / Dikta and Scheer (2021):

Based on the difference between a non- and semi-parametric estimate of $\mathbb{E}[\mathbb{1}_{\{\beta^T X \leq t\}}Y]$ (for parametric GLMs only; tests for the regression function)

• Other approaches using kernel estimators

• Based on the difference between a non-parametric and semi-parametric estimate of F_Y

- Based on the difference between a non-parametric and semi-parametric estimate of F_Y
- Non-parametric fit: empirical distribution function (ecdf)

$$\hat{F}_{Y,n}(t) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{Y_i \le t\}}$$

- Based on the difference between a non-parametric and semi-parametric estimate of F_Y
- Non-parametric fit: empirical distribution function (ecdf)

$$\hat{F}_{Y,n}(t) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{Y_i \le t\}}$$

• Semi-parametric fit, using MLE $\hat{\vartheta}_n$ and ecdf \hat{H}_n of $\{X_i\}_{i=1}^n$:

$$\hat{F}_{Y,\hat{\vartheta}_n}(t) \coloneqq \int F_{\hat{\vartheta}_n}(t|x)\hat{H}_n(dx) = \frac{1}{n}\sum_{i=1}^n F_{\hat{\vartheta}_n}(t|X_i)$$

• Conditional empirical process with estimated parameters:

$$\tilde{\alpha}_n(t) = \sqrt{n} \left(\hat{F}_{Y,n}(t) - \hat{F}_{Y,\hat{\vartheta}_n}(t) \right)$$
$$= \frac{1}{\sqrt{n}} \sum_{i=1}^n \mathbb{1}_{\{Y_i \le t\}} - F_{\hat{\vartheta}_n}(t|X_i)$$

- Kolmogorov-Smirnov type distance $\|\tilde{\alpha}_n\|_{\infty} = \sup_t |\tilde{\alpha}_n(t)|$ should be small under H_0

• Conditional empirical process with estimated parameters:

$$\tilde{\alpha}_n(t) = \sqrt{n} \left(\hat{F}_{Y,n}(t) - \hat{F}_{Y,\hat{\vartheta}_n}(t) \right)$$
$$= \frac{1}{\sqrt{n}} \sum_{i=1}^n \mathbb{1}_{\{Y_i \le t\}} - F_{\hat{\vartheta}_n}(t|X_i)$$

• Kolmogorov-Smirnov type distance $\|\tilde{\alpha}_n\|_{\infty} = \sup_t |\tilde{\alpha}_n(t)|$ should be small under $H_0...$ But how small is small enough?

(

• Conditional empirical process with estimated parameters:

$$\tilde{\alpha}_n(t) = \sqrt{n} \left(\hat{F}_{Y,n}(t) - \hat{F}_{Y,\hat{\vartheta}_n}(t) \right)$$
$$= \frac{1}{\sqrt{n}} \sum_{i=1}^n \mathbb{1}_{\{Y_i \le t\}} - F_{\hat{\vartheta}_n}(t|X_i)$$

• Kolmogorov-Smirnov type distance $\|\tilde{\alpha}_n\|_{\infty} = \sup_t |\tilde{\alpha}_n(t)|$ should be small under $H_0...$ But how small is small enough?

Find distribution of $\|\tilde{\alpha}_n\|_{\infty}$ to decide when H_0 should be rejected.

Under H_0 and some regularity conditions, $\tilde{\alpha}_n$ converges weakly to a centered Gaussian process $\tilde{\alpha}_{\infty}$ with known covariance function which is dependent on the true distribution functions of X and Y.

Under H_0 and some regularity conditions, $\tilde{\alpha}_n$ converges weakly to a centered Gaussian process $\tilde{\alpha}_{\infty}$ with known covariance function which is dependent on the true distribution functions of X and Y.

Proof sketch:

• Splitting as in Durbin (1973):

$$\tilde{\alpha}_n(t) = \sqrt{n} \left(\hat{F}_{Y,n}(t) - \hat{F}_{Y,\vartheta_0}(t) \right) \\ + \sqrt{n} \left(\hat{F}_{Y,\vartheta_0}(t) - \hat{F}_{Y,\vartheta_n}(t) \right)$$

 Apply Kosorok (2008), Theorem 7.17: convergence of fidis and tightness ⇒ weak convergence

Under H_0 and some regularity conditions, $\tilde{\alpha}_n$ converges weakly to a centered Gaussian process $\tilde{\alpha}_{\infty}$ with known covariance function which is **dependent on the true distribution functions of** X and Y.

Use bootstrap to approximate the distribution of $\|\tilde{\alpha}_n\|_{\infty}$.

Aim: Estimate the distribution of $\|\tilde{\alpha}_n\|_{\infty}$ under H_0

Method:

- Resample from the given data in a way that H_0 is fulfilled: $X_i^*=X_i,\,Y_i^*\sim F_{\hat{\vartheta}_n}(\;\cdot\;|X_i^*)$
- Compute the test statistic $\|\tilde{\alpha}_n^*\|_\infty$ for this new sample
- Repeat these steps many times and use the ecdf of the resulting test statistics as an estimate

Usage: *p*-value is approximated by the percentage of $\|\tilde{\alpha}_n^*\|_{\infty}$ that are greater than or equal to $\|\tilde{\alpha}_n\|_{\infty}$

Under H_0 and some regularity conditions, $\tilde{\alpha}_n$ converges weakly to a centered Gaussian process $\tilde{\alpha}_{\infty}$ with known covariance function which is dependent on the true distribution functions of X and Y.

Theorem

Under H_0 and some regularity conditions, $\tilde{\alpha}_n^*$ converges weakly to the same limit process $\tilde{\alpha}_{\infty}$.

Back to our motivating example

Back to our motivating example

Simulation study - Setup

 $X \sim \mathcal{N}(0, 1)$

 $H_0: (Y|X) \sim \mathcal{N}(\beta^T X, \sigma^2)$

(A)
$$Y = 1 + X + \varepsilon$$
 where $\varepsilon \sim \mathcal{N}(0, 1)$

(B) $Y = 1 + X + \varepsilon$ where ε follows a standard logistic distribution

(C)
$$Y = 1 + X + \varepsilon$$
 where $\varepsilon \sim t_5$

(D)
$$Y = 1 + X + X^2 + \varepsilon$$
 where $\varepsilon \sim \mathcal{N}(0, 1)$

(E) $Y = 1 + X + X\varepsilon$ where $\varepsilon \sim \mathcal{N}(0, 1)$

Simulation study - Setup

 $X \sim \mathcal{N}(0, 1)$

 $H_0: (Y|X) \sim \mathcal{N}(\beta^T X, \sigma^2)$

n=200 observations

m = 500 bootstrap iterations

r = 1000 simulation repetitions

Proportion of rejection for significance level $\alpha=5\%$

(A)
$$Y = 1 + X + \varepsilon$$
 where $\varepsilon \sim \mathcal{N}(0, 1)$

(B) $Y = 1 + X + \varepsilon$ where ε follows a standard logistic distribution

(C)
$$Y = 1 + X + \varepsilon$$
 where $\varepsilon \sim t_5$

(D)
$$Y = 1 + X + X^2 + \varepsilon$$
 where $\varepsilon \sim \mathcal{N}(0, 1)$

(E) $Y = 1 + X + X\varepsilon$ where $\varepsilon \sim \mathcal{N}(0, 1)$

Proportion of rejection in percentage terms for $\alpha = 5\%$:

	(A)	(B)	(C)	(D)	(E)
New approach	5.2	22.7	45.4	5.2	99.8
Andrews (1997)	5.6	18.2	37.6	7.4	100.0
Bierens & Wang (2012)	4.6	9.4	19.7	5.5	99.8
Dikta & Scheer (2021)	5.9	6.0	4.8	13.9	16.2

(A)
$$Y = 1 + X + \varepsilon$$
 where $\varepsilon \sim \mathcal{N}(0, 1)$

(B) $Y = 1 + X + \varepsilon$ where ε follows a standard logistic distribution

(C)
$$Y = 1 + X + \varepsilon$$
 where $\varepsilon \sim t_5$

(D)
$$Y = 1 + X + X^2 + \varepsilon$$
 where $\varepsilon \sim \mathcal{N}(0, 1)$

(E)
$$Y = 1 + X + X\varepsilon$$
 where $\varepsilon \sim \mathcal{N}(0, 1)$

- Compared to Andrews (1997): Better applicable to cases with high-dimensional covariates
- Compared to Bierens and Wang (2012): More sensitive to deviations from H₀ (in our simulation study)
- Compared to Stute and Zhu (2002) / Dikta and Scheer (2021): More specific because it tests for the whole conditional distribution not just the regression function
- Additional advantage:

Easily applicable due to $\emph{gofreg}\text{-}package$ in R

References

- Andrews, Donald WK (1997). "A conditional Kolmogorov test". In: *Econometrica: Journal of the Econometric Society*, pp. 1097–1128.
- Bierens, Herman J and Li Wang (2012). "Integrated conditional moment tests for parametric conditional distributions". In: *Econometric Theory* 28.2, pp. 328–362.
- Dikta, Gerhard and Marsel Scheer (2021). *Bootstrap Methods. With Applications in R.* 1st ed. Springer International Publishing.
- Durbin, James (1973). "Weak convergence of the sample distribution function when parameters are estimated". In: *The Annals of Statistics*, pp. 279–290.
 - Kosorok, Michael R (2008). Introduction to empirical processes and semiparametric inference. Vol. 61. Springer.
 - Stute, Winfried and Li-Xing Zhu (2002). "Model checks for generalized linear models". In: *Scandinavian Journal of Statistics* 29.3, pp. 535–545.

References

Preprint on arXiv:

R-package on CRAN:

Any questions? :)