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Motivating Example - Survival Analysis

• Medical study about the lifetime of cancer patients after
treatment starts

• Data is randomly right-censored (study ends / patients drop out)

• Covariates such as treatment dose or age of patient are fully
observed

Interested in distribution of survival times dependent on covariates.
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Mathematical Framework

Underlying data:
• covariates Xi ∈ Rp

• survival times Yi ∈ R+

• censoring times Ci ∈ R+

Observed data:
• covariates Xi ∈ Rp

• censored times Zi = min(Yi, Ci)
• censoring indicators δi = 1{Yi≤Ci}

Problem: Given an i.i.d. sample {(Xi, Zi, δi)}n
i=1, find the distribution

of survival times Y dependent on the vector of covariates X

Here: Check whether data fits to a parametric generalized linear model.

[Assumption: C is independent of σ(X, Y )]
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Parametric Generalized Linear Model (GLM)

• Linear Model:

• E[Y |X = x] = βT x for some β ∈ Rp

• FY |X belongs to an exponential family
with dispersion parameter ϕ

• These two hypotheses can be combined into a single one:

H0 : Y |X ∼ FY |X ∈ {F ( · |X, β, ϕ)|β ∈ Rp, ϕ > 0}
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Goodness-of-fit test - Test statistic
• Difference between parametric and non-parametric estimate of

marginal distribution function FY

• Parametric fit, using MLE (β̂n, ϕ̂n) and ecdf Ĥn of {Xi}n
i=1:

F̂Y (t|β̂n, ϕ̂n) =
∫

F (t|x, β̂n, ϕ̂n)Ĥn(dx) = 1
n

n∑
i=1

F (t|Xi, β̂n, ϕ̂n)

• Non-parametric fit: Kaplan-Meier estimator

• Kaplan-Meier type empirical process with estimated parameters
and covariates:

α̃KM
n (t) =

√
n

(
F̂ KM

Y,n (t) − F̂Y (t|β̂n, ϕ̂n)
)

• Use e.g. Kolmogorov-Smirnov distance ∥α̃KM
n ∥ = supt |α̃KM

n (t)|

Find distribution of ∥α̃KM
n ∥ to decide when H0 should be rejected.
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n

n∑
i=1

F (t|Xi, β̂n, ϕ̂n)

• Non-parametric fit: Kaplan-Meier estimator
• Kaplan-Meier type empirical process with estimated parameters

and covariates:
α̃KM

n (t) =
√

n
(
F̂ KM

Y,n (t) − F̂Y (t|β̂n, ϕ̂n)
)

• Use e.g. Kolmogorov-Smirnov distance ∥α̃KM
n ∥ = supt |α̃KM

n (t)|

Find distribution of ∥α̃KM
n ∥ to decide when H0 should be rejected.

EMS 2023 Gitte Kremling July 6, 2023 6 / 12



Goodness-of-fit test - Test statistic
• Difference between parametric and non-parametric estimate of

marginal distribution function FY

• Parametric fit, using MLE (β̂n, ϕ̂n) and ecdf Ĥn of {Xi}n
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Goodness-of-fit test - Limit distribution

Theorem
Under H0 and some regularity conditions, α̃KM

n converges in D[0, T ]
to a centered Gaussian process α̃KM

∞ with known covariance function
which is dependent on the true distribution functions of X, Y and C.
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Goodness-of-fit test - Limit distribution

Theorem
Under H0 and some regularity conditions, α̃KM

n converges in D[0, T ]
to a centered Gaussian process α̃KM

∞ with known covariance function
which is dependent on the true distribution functions of X, Y and C.
Proof sketch:

• Splitting as in Durbin (1973):

α̃KM
n (t) =

√
n

(
F̂ KM

Y,n(t) − FY (t)
)

+
√

n
(

FY (t) − F̂Y (t|β0, ϕ0)
)

+
√

n
(

F̂Y (t|β0, ϕ0) − F̂Y (t|β̂n, ϕ̂n)
)

• Apply Billingsley (1968), Theorem 15.1:
convergence of fidis ∧ tightness ⇒ convergence in D[0, T ]
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Goodness-of-fit test - Limit distribution

Theorem
Under H0 and some regularity conditions, α̃KM

n converges in D[0, T ]
to a centered Gaussian process α̃KM

∞ with known covariance function
which is dependent on the true distribution functions of X, Y and C.

Use bootstrap to approximate the distribution of ∥α̃KM
n ∥.
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Goodness-of-fit test - Bootstrap

Goal: Estimate the distribution of ∥α̃KM
n ∥ under H0

Idea:
• Resample from the given data in a way that H0 is fulfilled

(Y ∗
i ∼ F ( · |X∗

i , β̂n, ϕ̂n))

• Compute the test statistic ∥α̃KM∗
n ∥ for this new sample

• Repeat these steps many times and use the empirical distribution
function of the resulting test statistics as an estimate

Result: p-value is given by the percentage of ∥α̃KM∗
n ∥ that are

greater than or equal to ∥α̃KM
n ∥
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Numerical results - Simulated data

H0 Y |X ∼ Gamma(ϕ) log(E[Y |X = x]) = βT x

Sim. (A) Y |X ∼ Gamma, ϕ = 1 log(E[Y |X = x]) = x1 + 2x2
Sim. (B) Y |X ∼ Gamma, ϕ = 1 log(E[Y |X = x]) = x1 + 2x2 + 0.1x2

2
Sim. (C) Y |X ∼ Normal, ϕ = 1 log(E[Y |X = x]) = x1 + 2x2

• Covariates X = (X1, X2) with X1 = 1, X2 ∼ UNI(−5, 5)

• Censoring times C ∼ N (9, 1) (≈ 40% censored)

• n = 500 observations, m = 100 bootstrap iterations,
rep = 100 simulation repetitions
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Conclusions & Outlook

• Developed a goodness-of-fit test for parametric GLM under
random censorship

• Promising numerical results

• Identified the limit distribution of the test statistic (Kaplan-Meier
type process with estimated parameters and covariates)

Next:
• Identify the limit distribution of the corresponding bootstrap

process (should be the same)

• Apply methods to a real data example

Thank you for your attention! Any questions? :)
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Kaplan-Meier estimator
• Non-parametric estimator of the survival function of Y

SY (t) = 1 − FY (t) = P(Y > t)

given a censored i.i.d. sample (Zi, δi)n
i=1

• If SY is discrete with mass at points t1 < ... < tn,

SY (t) =
∏

i:ti≤t

P(Y > ti|Y ≥ ti) =
∏

i:ti≤t

(1 − P(Y = ti|Y ≥ ti))

• Kaplan-Meier (KM) estimator defined by

ŜKM
Y,n (t) =

∏
i:ti≤t

(
1 − di

ni

)
ti: time when at least one event happened
di =

∑n

i=1 δi1{Zi=ti} (number of events that happened at time ti)
ni =

∑n

i=1 1{Zi≥ti} (individuals known to have survived up to time ti)
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Goodness-of-fit test - Resampling scheme

1. For i = 1, . . . , n

a) Generate X∗
i according to the empirical df of X1, . . . , Xn

b) Generate Y ∗
i according to the parametric fit

FY |X( · |X∗
i , β̂n, ϕ̂n)

c) Generate C∗
i according to the Kaplan-Meier estimator for

the censoring times C1, . . . , Cn

d) Set Z∗
i = min(Y ∗

i , C∗
i ) and δ∗

i = 1{Y ∗
i ≤C∗

i }

2. Compute MLE (β̂∗
n, ϕ̂∗

n) for bootstrap data set (X∗
i , Z∗

i , δ∗
i )n

i=1

3. Obtain process α̃KM∗
n (t) and calculate KS/CvM distance

4. Repeat steps 1-3 m times to compute bootstrap p-value
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