Bootstrap-based goodness-of-fit test for parametric generalized linear models under random censorship

July 6, 2023

Gitte Kremling, Gerhard Dikta, Richard Stockbridge

- Medical study about the lifetime of cancer patients after treatment starts
- Data is randomly right-censored (study ends / patients drop out)
- Covariates such as treatment dose or age of patient are fully observed

Interested in distribution of survival times dependent on covariates.

Motivating Example - Survival Analysis

Simulated example data: Lifetime of cancer patients

Mathematical Framework

Underlying data:

- covariates $X_i \in \mathbb{R}^p$
- survival times $Y_i \in \mathbb{R}_+$
- censoring times $C_i \in \mathbb{R}_+$

Observed data:

- covariates $X_i \in \mathbb{R}^p$
- \bullet censored times $Z_i = \min(Y_i, C_i)$
- censoring indicators $\delta_i = \mathbb{1}_{\{Y_i \leq C_i\}}$

Mathematical Framework

Underlying data:

- covariates $X_i \in \mathbb{R}^p$
- survival times $Y_i \in \mathbb{R}_+$
- censoring times $C_i \in \mathbb{R}_+$

Observed data:

- covariates $X_i \in \mathbb{R}^p$
- \bullet censored times $Z_i = \min(Y_i, C_i)$
- censoring indicators $\delta_i = 1$ _{*Y_i* < *C_i*}

Problem: Given an i.i.d. sample $\{(X_i, Z_i, \delta_i)\}_{i=1}^n$, find the distribution of survival times *Y* dependent on the vector of covariates *X*

Here: Check whether data fits to a parametric generalized linear model.

[Assumption: C is independent of $\sigma(X, Y)$]

- Linear Model:
	- \bullet $\mathbb{E}[Y | X = x] = \beta^T x$ for some $\beta \in \mathbb{R}^p$
- Generalized Linear Model:
	- $g(\mathbb{E}[Y|X=x]) = \beta^T x$ for some $\beta \in \mathbb{R}^p$ and some given link function *g*

Parametric Generalized Linear Model (GLM)

- Parametric Generalized Linear Model:
	- $g(\mathbb{E}[Y|X=x]) = \beta^T x$ for some $\beta \in \mathbb{R}^p$ and some given link function *g*
	- $F_{Y|X}$ belongs to an exponential family with dispersion parameter *ϕ*

Parametric Generalized Linear Model (GLM)

- Parametric Generalized Linear Model:
	- $g(\mathbb{E}[Y|X=x]) = \beta^T x$ for some $\beta \in \mathbb{R}^p$ and some given link function *g*
	- $F_{Y|X}$ belongs to an exponential family with dispersion parameter *ϕ*
- These two hypotheses can be combined into a single one:

$$
H_0: Y|X \sim F_{Y|X} \in \{F(\ \cdot \ |X,\beta,\phi)|\beta \in \mathbb{R}^p, \phi > 0\}
$$

Goodness-of-fit test - Test statistic

- Difference between parametric and non-parametric estimate of marginal distribution function *F^Y*
- Parametric fit, using MLE $(\hat{\beta}_n, \hat{\phi}_n)$ and ecdf \hat{H}_n of $\{X_i\}_{i=1}^n$:

$$
\hat{F}_Y(t|\hat{\beta}_n, \hat{\phi}_n) = \int F(t|x, \hat{\beta}_n, \hat{\phi}_n) \hat{H}_n(dx) = \frac{1}{n} \sum_{i=1}^n F(t|X_i, \hat{\beta}_n, \hat{\phi}_n)
$$

• Non-parametric fit: Kaplan-Meier estimator

Goodness-of-fit test - Test statistic

- Difference between parametric and non-parametric estimate of marginal distribution function *F^Y*
- Parametric fit, using MLE $(\hat{\beta}_n, \hat{\phi}_n)$ and ecdf \hat{H}_n of $\{X_i\}_{i=1}^n$:

$$
\hat{F}_Y(t|\hat{\beta}_n, \hat{\phi}_n) = \int F(t|x, \hat{\beta}_n, \hat{\phi}_n) \hat{H}_n(dx) = \frac{1}{n} \sum_{i=1}^n F(t|X_i, \hat{\beta}_n, \hat{\phi}_n)
$$

- Non-parametric fit: Kaplan-Meier estimator
- Kaplan-Meier type empirical process with estimated parameters and covariates:

$$
\tilde{\alpha}_n^{\mathsf{KM}}(t) = \sqrt{n} \left(\hat{F}_{Y,n}^{\mathsf{KM}}(t) - \hat{F}_Y(t | \hat{\beta}_n, \hat{\phi}_n) \right)
$$

 \bullet Use e.g. Kolmogorov-Smirnov distance $\|\tilde{\alpha}_n^{\mathsf{KM}}\| = \sup_t |\tilde{\alpha}_n^{\mathsf{KM}}(t)|$

Goodness-of-fit test - Test statistic

- Difference between parametric and non-parametric estimate of marginal distribution function *F^Y*
- Parametric fit, using MLE $(\hat{\beta}_n, \hat{\phi}_n)$ and ecdf \hat{H}_n of $\{X_i\}_{i=1}^n$:

$$
\hat{F}_Y(t|\hat{\beta}_n, \hat{\phi}_n) = \int F(t|x, \hat{\beta}_n, \hat{\phi}_n) \hat{H}_n(dx) = \frac{1}{n} \sum_{i=1}^n F(t|X_i, \hat{\beta}_n, \hat{\phi}_n)
$$

- Non-parametric fit: Kaplan-Meier estimator
- Kaplan-Meier type empirical process with estimated parameters and covariates:

$$
\tilde{\alpha}_n^{\text{KM}}(t) = \sqrt{n} \left(\hat{F}_{Y,n}^{\text{KM}}(t) - \hat{F}_Y(t | \hat{\beta}_n, \hat{\phi}_n) \right)
$$

 \bullet Use e.g. Kolmogorov-Smirnov distance $\|\tilde{\alpha}_n^{\mathsf{KM}}\| = \sup_t |\tilde{\alpha}_n^{\mathsf{KM}}(t)|$

Find distribution of $\|\tilde{\alpha}_n^{\textsf{KM}}\|$ to decide when H_0 should be rejected.

Theorem

Under H_0 and some regularity conditions, $\tilde{\alpha}_n^{KM}$ converges in $D[0,T]$ to a centered Gaussian process $\tilde{\alpha}_\infty^{\cal KM}$ with known covariance function which is dependent on the true distribution functions of *X*, *Y* and *C*.

Theorem

Under H_0 and some regularity conditions, $\tilde{\alpha}_n^{KM}$ converges in $D[0,T]$ to a centered Gaussian process $\tilde{\alpha}_\infty^{\cal KM}$ with known covariance function which is dependent on the true distribution functions of *X*, *Y* and *C*. Proof sketch:

• Splitting as in Durbin (1973):

α˜

$$
\tilde{\mathbf{x}}_n^{\text{KM}}(t) = \sqrt{n} \Big(\hat{F}_{Y,n}^{\text{KM}}(t) - F_Y(t) \Big) + \sqrt{n} \Big(F_Y(t) - \hat{F}_Y(t | \beta_0, \phi_0) \Big) + \sqrt{n} \Big(\hat{F}_Y(t | \beta_0, \phi_0) - \hat{F}_Y(t | \hat{\beta}_n, \hat{\phi}_n) \Big)
$$

• Apply Billingsley (1968), Theorem 15.1: convergence of fidis ∧ tightness \Rightarrow convergence in *D*[0*,T*]

Theorem

Under H_0 and some regularity conditions, $\tilde{\alpha}_n^{KM}$ converges in $D[0,T]$ to a centered Gaussian process $\tilde{\alpha}_\infty^{\cal KM}$ with known covariance function which is dependent on the true distribution functions of *X*, *Y* and *C*.

Use bootstrap to approximate the distribution of $\|\tilde{\alpha}_n^{\mathsf{KM}}\|.$

 ${\sf Goal}\colon$ Estimate the distribution of $\|\tilde{\alpha}_n^{KM}\|$ under H_0

Idea:

- Resample from the given data in a way that H_0 is fulfilled $(Y_i^* \sim F(\ \cdot \ | X_i^*, \hat{\beta}_n, \hat{\phi}_n))$
- \bullet Compute the test statistic $\| \tilde{\alpha}_n^{K M * } \|$ for this new sample
- Repeat these steps many times and use the empirical distribution function of the resulting test statistics as an estimate

 ${\sf Result}\colon p\text{-value}$ is given by the percentage of $\|\tilde{\alpha}_n^{KM*}\|$ that are greater than or equal to $\|\tilde{\alpha}_n^{KM}\|$

- Covariates $X = (X_1, X_2)$ with $X_1 = 1, X_2 \sim UNI(-5, 5)$
- Censoring times $C \sim \mathcal{N}(9, 1)$ ($\approx 40\%$ censored)
- $n = 500$ observations, $m = 100$ bootstrap iterations, $rep = 100$ simulation repetitions

- Developed a goodness-of-fit test for parametric GLM under random censorship
- Promising numerical results
- Identified the limit distribution of the test statistic (Kaplan-Meier type process with estimated parameters and covariates)

Conclusions & Outlook

- Developed a goodness-of-fit test for parametric GLM under random censorship
- Promising numerical results
- Identified the limit distribution of the test statistic (Kaplan-Meier type process with estimated parameters and covariates)

Next:

- Identify the limit distribution of the corresponding bootstrap process (should be the same)
- Apply methods to a real data example

References I

- Billingsley, Patrick (1968). Convergence of probability measures. John Wiley & Sons Inc., New York.
- Durbin, James (1973). "Weak convergence of the sample 記 distribution function when parameters are estimated". In: The Annals of Statistics, pp. 279–290.
- Kaplan, Edward L and Paul Meier (1958). "Nonparametric estimation from incomplete observations". In: Journal of the American statistical association 53.282, pp. 457–481.
- 量
-

Nikabadze, A and W Stute (1997). "Model checks under random censorship". In: Statistics & probability letters 32.3, pp. 249–259. Stute, W, W González Manteiga, and C Sánchez Sellero (2000). "Nonparametric model checks in censored regression". In:

Communications in Statistics-theory and Methods 29.7,

pp. 1611–1629.

Conclusions & Outlook

- Developed a goodness-of-fit test for parametric GLM under random censorship
- Promising numerical results
- Identified the limit distribution of the test statistic (Kaplan-Meier type process with estimated parameters and covariates)

Next:

- Identify the limit distribution of the corresponding bootstrap process (should be the same)
- Apply methods to a real data example

Thank you for your attention! Any questions? :)

Kaplan-Meier estimator

• Non-parametric estimator of the survival function of *Y*

$$
S_Y(t) = 1 - F_Y(t) = \mathbb{P}(Y > t)
$$

given a censored i.i.d. sample $(Z_i, \delta_i)_{i=1}^n$

• If S_Y is discrete with mass at points $t_1 < \ldots < t_n$,

$$
S_Y(t) = \prod_{i:t_i \leq t} \mathbb{P}(Y > t_i | Y \geq t_i) = \prod_{i:t_i \leq t} (1 - \mathbb{P}(Y = t_i | Y \geq t_i))
$$

• Kaplan-Meier (KM) estimator defined by

$$
\hat{S}_{Y,n}^{KM}(t) = \prod_{i:t_i \le t} \left(1 - \frac{d_i}{n_i}\right)
$$

ti: time when at least one event happened $d_i = \sum_{i=1}^n \delta_i 1\!\!1_{\{Z_i = t_i\}}$ (number of events that happened at time t_i) $n_i = \sum_{i=1}^{n_i-1} 1\!\!1_{\{Z_i \geq t_i\}}$ (individuals known to have survived up to time t_i)

1. For
$$
i = 1, \ldots, n
$$

- a) Generate X^*_i according to the empirical df of X_1, \ldots, X_n
- b) Generate Y_i^* according to the parametric fit $F_{Y|X}(\ \cdot\ |X_i^*, \hat{\beta}_n, \hat{\phi}_n)$
- c) $\,$ Generate C_i^* according to the Kaplan-Meier estimator for the censoring times C_1, \ldots, C_n

$$
\text{d) Set } Z_i^* = \min(Y_i^*, C_i^*) \text{ and } \delta_i^* = 1\!\!1_{\{Y_i^* \leq C_i^*\}}
$$

- 2. Compute MLE $(\hat{\beta}_{n}^{*},\, \hat{\phi}_{n}^{*})$ for bootstrap data set $(X_{i}^{*}, Z_{i}^{*}, \delta_{i}^{*})_{i=1}^{n}$
- 3. Obtain process $\tilde{\alpha}_n^{\mathsf{KIM}*}(t)$ and calculate KS/CvM distance
- 4. Repeat steps 1-3 *m* times to compute bootstrap *p*-value