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Motivation
• Score-based generative models produce very good re-

sults in practice.

• Are there theoretical guarantees for their good perfor-
mance?

• Drawbacks of existing works:

– Difference measured in TV or KL distance, as in [1]
(less interpretable and stable in high dimensions)

– Strong assumptions on data distribution, as in [2]
(e.g. excl. Gaussian mixtures)

– Only apply to specific forward SDEs, as in [3]
(e.g. OU process)

Aim of our project:
Establish general error bounds in W2-distance relying on
weaker assumptions on the data distribution

Probability Flow ODE
Forward SDE

(
Xt ∼ pt

)
dXt = −f(t)Xt dt + g(t) dBt, t ∈ [0, T ]
X0 ∼ p0

Reverse ODE
(
X̃t ∼ pT −t

)
dX̃t

dt
= f(T − t)X̃t + 1

2g2(T − t)∇ log pT −t(X̃t)

X̃0 ∼ pT

Data Noise

X0 XT

X̃T X̃0

Fixed Forward Diffusion Process

Generative Reverse Denoising Process

Implementation of Reverse ODE based on:

Approximation 1: Initialization p̂T ≈ pT

dYt

dt
= f(T − t)Yt + 1

2g2(T − t)∇ log pT −t(Yt)

Y0 ∼ p̂T

Approximation 2: Discretization
0 t1 tK−1 T

. . .
h

dŶt

dt
= f(T − t)Ŷt + 1

2g2(T − t)∇ log pT −tk−1(Ŷtk−1)

Ŷ0 ∼ p̂T

Approximation 3: Score matching sθ(x, t) ≈ pt(x)
dẐt

dt
= f(T − t)Ẑt + 1

2g2(T − t)sθ(Ẑtk−1 , T − tk−1)

Ẑ0 ∼ p̂T

→ New sample ẐT approximately follows distribution p0

Main Result
Non-asymptotic error bound for the distance between the approximated sample dis-
tribution and the true data distribution (under the assumptions listed below):
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Key properties of the individual error components:

E0(f, g, T ) E1(f, g, K, h) E3(f, g, K, h, E)

Error source Initialization Discretization Score matching

Vanishes with T → ∞ h → 0 E → 0
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Main finding: Same asymptotics as under the stronger assumption in [2]!

Assumptions
1. (Regularity of the data distribution)

• p0 ∈ C2(Rd) and positive everywhere
• p0 is (α0, M0)-weakly log-concave, i.e.

⟨∇ log p0(x) − ∇ log p0(y), x − y⟩ ≤ −α0∥x − y∥2 + 2
√

M0 tanh
( √

M0
2 ∥x − y∥

)
∥x − y∥

• log p0 is L0-smooth, i.e.
∥∇ log p0(x) − ∇ log p0(y)∥ ≤ L0∥x − y∥

2. (Lipschitz-continuity in time of the score function)

sup
k,t∈[tk−1,tk]

∥∥∇ log pT −t(x) − ∇ log pT −tk−1(x)
∥∥ ≤ L1h(1 + ∥x∥)

3. (Boundedness of the score matching error)

sup
k

∥∥∥∇ log pT −tk−1(Ẑtk−1) − sθ(Ẑtk−1 , T − tk−1)
∥∥∥

L2
≤ E

More Examples
Other choices of the drift f and the diffusion g result in the following heuristics for the
choice of hyperparameters:
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